In threaded binary tree ……… points to higher nodes in tree.
A. Info B. Root C. Threads D. Child
A. Info B. Root C. Threads D. Child
A. Right tree is empty B. Left tree is empty C. Both left & right sub trees are empty D. Root node is empty
A. O(1) B. O(log n) C. O(n) D. O(n log n) 15. E. O(n2 )
(A) Preorder (B) Inorder (C) Postorder (D) Level order
(A) Preorder (B) Inorder (C) Postorder (D) Level order
(A) Preorder and Inorder (B) Preorder and Postorder (C) Inorder and Postorder (D) None of the Above
(A) d e b f g c a (B) e d b g f c a (C) e d b f g c a (D) d e f g b c a
(A) Root is visited before right subtree (B) Left subtree is always visited before right subtree (C) Root is visited after left subtree (D) All of the above (E) None of the above
(A) Preorder (B) Inorder (C) Postorder (D) Level order
(A) O(n) for all (B) O(Logn) for all (C) O(Logn) for search and insert, and O(n) for delete (D) O(Logn) for search, and O(n) for insert and delete
(A) left, root, right (B) root, left, right (C) right, root, left (D) right, left, root
(A) Ascending order (B) Descending order (C) Both sequence (D) No specific order
A. Left sub-tree, Right sub-tree and root B. Right sub-tree, Left sub-tree and root C. Root, Left sub-tree, Right sub-tree D. Right sub-tree, root, Left sub-tree
A. complete binary tree B. binary search tree C. extended binary tree D. data structure
A. Array with pointers B. Single linear array C. Two dimensional arrays D. Three dimensional arrays
A. A tree graph B. Free tree C. A tree d D. All of the above