Which of the following pairs of traversals is not sufficient to build a binary tree from the given traversals?
(A) Preorder and Inorder (B) Preorder and Postorder (C) Inorder and Postorder (D) None of the Above
(A) Preorder and Inorder (B) Preorder and Postorder (C) Inorder and Postorder (D) None of the Above
(A) d e b f g c a (B) e d b g f c a (C) e d b f g c a (D) d e f g b c a
(A) Root is visited before right subtree (B) Left subtree is always visited before right subtree (C) Root is visited after left subtree (D) All of the above (E) None of the above
(A) Preorder (B) Inorder (C) Postorder (D) Level order
(A) O(n) for all (B) O(Logn) for all (C) O(Logn) for search and insert, and O(n) for delete (D) O(Logn) for search, and O(n) for insert and delete
(A) left, root, right (B) root, left, right (C) right, root, left (D) right, left, root
(A) Ascending order (B) Descending order (C) Both sequence (D) No specific order
A. Left sub-tree, Right sub-tree and root B. Right sub-tree, Left sub-tree and root C. Root, Left sub-tree, Right sub-tree D. Right sub-tree, root, Left sub-tree
A. complete binary tree B. binary search tree C. extended binary tree D. data structure
A. Array with pointers B. Single linear array C. Two dimensional arrays D. Three dimensional arrays
A. A tree graph B. Free tree C. A tree d D. All of the above
A. End nodes B. Terminal nodes C. Final nodes D. Last nodes
a) One pointer b) Two pointer c) Three pointer d) None
a) Singly linked list b) Doubly linked list c) Circular linked list d) None
a) Rear=MAX_SIZE-1 b) Front=(rear+1)mod MAX_SIZE c) Front=rear+1 d) Rear=front
a) Only front pointer b) Only rear pointer c) Both front and rear pointer d) None of the front and rear pointer